Ads
related to: linear properties of crystals and diamonds
Search results
Results From The WOW.Com Content Network
Type IIb diamonds, which account for ~0.1% of gem diamonds, are usually a steely blue or gray due to boron atoms scattered within the crystal matrix. These diamonds are also semiconductors, unlike other diamond types (see Electrical properties). Most blue-gray diamonds coming from the Argyle mine of
Moreover, the diamond crystal as a network in space has a strong isotropic property. [8] Namely, for any two vertices x, y of the crystal net, and for any ordering of the edges adjacent to x and any ordering of the edges adjacent to y, there is a net-preserving congruence taking x to y and each x-edge to the similarly ordered y-edge.
Main diamond producing countries. Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic.Diamond as a form of carbon is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of electricity, and insoluble in water.
The crystal structure of diamond is a face-centered cubic lattice ... on the potential offered by diamond's unique material properties, ... of linear sp carbon chains ...
The diamond crystal structure belongs to the face-centered cubic lattice, with a repeated two-atom pattern. In crystallography, a crystal system is a set of point groups (a group of geometric symmetries with at least one fixed point). A lattice system is a set of Bravais lattices.
Below 13.2 °C, tin exists in the gray form, which has a diamond cubic crystal structure, similar to diamond, silicon or germanium. Gray tin has no metallic properties at all, is a dull gray powdery material, and has few uses, other than a few specialized semiconductor applications. [24]
Lonsdaleite (named in honour of Kathleen Lonsdale), also called hexagonal diamond in reference to the crystal structure, is an allotrope of carbon with a hexagonal lattice, as opposed to the cubical lattice of conventional diamond.
Type II diamonds absorb in a different region of the infrared, and transmit in the ultraviolet below 225 nm, unlike Type I diamonds. They also have differing fluorescence characteristics. The crystals as found tend to be large and irregular in shape. Type II diamonds were formed under extremely high pressure for longer time periods.