When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Poisson point process - Wikipedia

    en.wikipedia.org/wiki/Poisson_point_process

    A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...

  3. Burke's theorem - Wikipedia

    en.wikipedia.org/wiki/Burke's_theorem

    In queueing theory, a discipline within the mathematical theory of probability, Burke's theorem (sometimes the Burke's output theorem [1]) is a theorem (stated and demonstrated by Paul J. Burke while working at Bell Telephone Laboratories) asserting that, for the M/M/1 queue, M/M/c queue or M/M/∞ queue in the steady state with arrivals is a Poisson process with rate parameter λ:

  4. Point process - Wikipedia

    en.wikipedia.org/wiki/Point_process

    A Poisson (counting) process on the line can be characterised by two properties : the number of points (or events) in disjoint intervals are independent and have a Poisson distribution. A Poisson point process can also be defined using these two properties. Namely, we say that a point process is a Poisson point process if the following two ...

  5. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  6. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    The renewal process is a generalization of the Poisson process. In essence, the Poisson process is a continuous-time Markov process on the positive integers (usually starting at zero) which has independent exponentially distributed holding times at each integer i {\displaystyle i} before advancing to the next integer, i + 1 {\displaystyle i+1} .

  7. Poisson boundary - Wikipedia

    en.wikipedia.org/wiki/Poisson_boundary

    For example, the Poisson boundary of a free group is the space of ends of its Cayley tree. [10] The identification of the full Martin boundary is more involved; in case the random walk has finite range (the step distribution is supported on a finite set) the Martin boundary coincides with the minimal Martin boundary and both coincide with the ...

  8. Phase-type distribution - Wikipedia

    en.wikipedia.org/wiki/Phase-type_distribution

    Further, let the process have an initial probability of starting in any of the m + 1 phases given by the probability vector (α 0,α) where α 0 is a scalar and α is a 1 × m vector. The continuous phase-type distribution is the distribution of time from the above process's starting until absorption in the absorbing state.

  9. Poisson kernel - Wikipedia

    en.wikipedia.org/wiki/Poisson_kernel

    In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.