Search results
Results From The WOW.Com Content Network
The convex hull of a simple polygon (blue). Its four pockets are shown in yellow; the whole region shaded in either color is the convex hull. In discrete geometry and computational geometry, the convex hull of a simple polygon is the polygon of minimum perimeter that contains a given simple polygon.
In geometry, the convex hull, convex envelope or convex closure [1] of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset.
The faces usually consist of triangles (triangle mesh), quadrilaterals (quads), or other simple convex polygons . A polygonal mesh may also be more generally composed of concave polygons, or even polygons with holes. The study of polygon meshes is a large sub-field of computer graphics (specifically 3D computer graphics) and geometric modeling
The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...
A convex polyhedron is a polyhedron that bounds a convex set. Every convex polyhedron can be constructed as the convex hull of its vertices, and for every finite set of points, not all on the same plane, the convex hull is a convex polyhedron. Cubes and pyramids are examples of convex polyhedra.
A convex curve (black) forms a connected subset of the boundary of a convex set (blue), and has a supporting line (red) through each of its points. A parabola, a convex curve that is the graph of the convex function () = In geometry, a convex curve is a plane curve that has a supporting line through each of its points.
An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]
Convex polygon, a polygon which encloses a convex set of points; Convex polytope, a polytope with a convex set of points; Convex metric space, a generalization of the convexity notion in abstract metric spaces; Convex function, when the line segment between any two points on the graph of the function lies above or on the graph