Search results
Results From The WOW.Com Content Network
In astrophysics, the mass–luminosity relation is an equation giving the relationship between a star's mass and its luminosity, first noted by Jakob Karl Ernst Halm. [1] The relationship is represented by the equation: L L ⊙ = ( M M ⊙ ) a {\displaystyle {\frac {L}{L_{\odot }}}=\left({\frac {M}{M_{\odot }}}\right)^{a}} where L ⊙ and M ⊙ ...
In astrophysics and physical cosmology the mass-to-light ratio, normally designated with the Greek letter upsilon, ϒ, [1] is the quotient between the total mass of a spatial volume (typically on the scales of a galaxy or a cluster) and its luminosity.
Luminosity is an absolute measure of radiated electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. [1] [2] In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects. [3] [4]
Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. [1] In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency ν {\displaystyle \nu } . [ 2 ]
The mass, radius, and luminosity of a star are closely interlinked, and their respective values can be approximated by three relations. First is the Stefan–Boltzmann law, which relates the luminosity L, the radius R and the surface temperature T eff. Second is the mass–luminosity relation, which relates the luminosity L and the mass M.
The apparent magnitude (m) is the brightness of an object and depends on an object's intrinsic luminosity, its distance, and the extinction reducing its brightness. The absolute magnitude ( M ) describes the intrinsic luminosity emitted by an object and is defined to be equal to the apparent magnitude that the object would have if it were ...
In that situation the combined mass of the positive–negative charge carrier pair is approximately 918 times smaller (half of the proton-to-electron mass ratio), while the radiation pressure on the positrons doubles the effective upward force per unit mass, so the limiting luminosity needed is reduced by a factor of ≈ 918×2.
The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.