When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1] Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.

  3. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    The Sellmeier equation is an empirical relationship between refractive index and wavelength for a particular transparent medium. The equation is used to determine the dispersion of light in the medium. It was first proposed in 1872 by Wolfgang Sellmeier and was a development of the work of Augustin Cauchy on Cauchy's equation for modelling ...

  4. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency ...

  5. Group-velocity dispersion - Wikipedia

    en.wikipedia.org/wiki/Group-velocity_dispersion

    In optics, group-velocity dispersion (GVD) is a characteristic of a dispersive medium, used most often to determine how the medium affects the duration of an optical pulse traveling through it. Formally, GVD is defined as the derivative of the inverse of group velocity of light in a material with respect to angular frequency , [ 1 ] [ 2 ]

  6. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".

  7. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    For a more accurate description of the wavelength dependence of the refractive index, the Sellmeier equation can be used. [29] It is an empirical formula that works well in describing dispersion. Sellmeier coefficients are often quoted instead of the refractive index in tables.

  8. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.

  9. Statistical dispersion - Wikipedia

    en.wikipedia.org/wiki/Statistical_dispersion

    In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.