Search results
Results From The WOW.Com Content Network
In the Euclidean plane with points a, b, c referred to an origin, the ternary operation [,,] = + has been used to define free vectors. [2] Since ( abc ) = d implies b – a = c – d , the directed line segments b – a and c – d are equipollent and are associated with the same free vector.
A planar ternary ring (PTR) or ternary field is special type of ternary system used by Marshall Hall [1] to construct projective planes by means of coordinates. A planar ternary ring is not a ring in the traditional sense, but any field gives a planar ternary ring where the operation T {\displaystyle T} is defined by T ( a , b , c ) = a b + c ...
Configurations (4 3 6 2) (a complete quadrangle, at left) and (6 2 4 3) (a complete quadrilateral, at right).. In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points.
The most basic example is the flat Euclidean plane, an idealization of a flat surface in physical space such as a sheet of paper or a chalkboard. On the Euclidean plane, any two points can be joined by a unique straight line along which the distance can be measured.
In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).
For functions defined in the plane or more generally on an Euclidean space , it is necessary to consider functions that are vector-valued or matrix-valued. It is also conceptually helpful to do this in an invariant manner (i.e., a coordinate-free way).
A plane duality is a map from a projective plane C = (P, L, I) to its dual plane C ∗ = (L, P, I ∗) (see § Principle of duality above) which preserves incidence. That is, a plane duality σ will map points to lines and lines to points (P σ = L and L σ = P) in such a way that if a point Q is on a line m (denoted by Q I m) then Q I m ⇔ m ...
Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry. Hilbert's axioms, unlike Tarski's axioms , do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic .