Search results
Results From The WOW.Com Content Network
A graph exemplifying merge sort. Two red arrows starting from the same node indicate a split, while two green arrows ending at the same node correspond to an execution of the merge algorithm. The merge algorithm plays a critical role in the merge sort algorithm, a comparison-based sorting algorithm. Conceptually, the merge sort algorithm ...
If the running time (number of comparisons) of merge sort for a list of length n is T(n), then the recurrence relation T(n) = 2T(n/2) + n follows from the definition of the algorithm (apply the algorithm to two lists of half the size of the original list, and add the n steps taken to merge the resulting two lists). [5]
The sort-merge join (also known as merge join) is a join algorithm and is used in the implementation of a relational database management system. The basic problem of a join algorithm is to find, for each distinct value of the join attribute, the set of tuples in each relation which display that value. The key idea of the sort-merge algorithm is ...
The classic merge outputs the data item with the lowest key at each step; given some sorted lists, it produces a sorted list containing all the elements in any of the input lists, and it does so in time proportional to the sum of the lengths of the input lists. Denote by A[1..p] and B[1..q] two arrays sorted in increasing order.
In order to find the value associated with a given key, a sequential search is used: each element of the list is searched in turn, starting at the head, until the key is found. Associative lists provide a simple way of implementing an associative array , but are efficient only when the number of keys is very small.
The previous example is a two-pass sort: first sort, then merge. The sort ends with a single k -way merge, rather than a series of two-way merge passes as in a typical in-memory merge sort. This is because each merge pass reads and writes every value from and to disk, so reducing the number of passes more than compensates for the additional ...
A circular list can be split into two circular lists, in constant time, by giving the addresses of the last node of each piece. The operation consists in swapping the contents of the link fields of those two nodes. Applying the same operation to any two nodes in two distinct lists joins the two list into one.
Implementations of the fork–join model will typically fork tasks, fibers or lightweight threads, not operating-system-level "heavyweight" threads or processes, and use a thread pool to execute these tasks: the fork primitive allows the programmer to specify potential parallelism, which the implementation then maps onto actual parallel execution. [1]