When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    Depending on the problem at hand, pre-order, post-order, and especially one of the number of subtrees − 1 in-order operations may be optional. Also, in practice more than one of pre-order, post-order, and in-order operations may be required. For example, when inserting into a ternary tree, a pre-order operation is performed by comparing items.

  3. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    A walk in which each parent node is traversed before its children is called a pre-order walk; a walk in which the children are traversed before their respective parents are traversed is called a post-order walk; a walk in which a node's left subtree, then the node itself, and finally its right subtree are traversed is called an in-order traversal.

  4. m-ary tree - Wikipedia

    en.wikipedia.org/wiki/M-ary_tree

    The pre-order traversal goes to parent, left subtree and the right subtree, and for traversing post-order it goes by left subtree, right subtree, and parent node. For traversing in-order, since there are more than two children per node for m > 2, one must define the notion of left and right subtrees. One common method to establish left/right ...

  5. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    In pre-order, we always visit the current node; next, we recursively traverse the current node's left subtree, and then we recursively traverse the current node's right subtree. The pre-order traversal is a topologically sorted one, because a parent node is processed before any of its child nodes is done.

  6. Preorder - Wikipedia

    en.wikipedia.org/wiki/Preorder

    A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph.

  7. Order statistic tree - Wikipedia

    en.wikipedia.org/wiki/Order_statistic_tree

    To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1

  8. Threaded binary tree - Wikipedia

    en.wikipedia.org/wiki/Threaded_binary_tree

    "A binary tree is threaded by making all right child pointers that would normally be null point to the in-order successor of the node (if it exists), and all left child pointers that would normally be null point to the in-order predecessor of the node." [1] This assumes the traversal order is the same as in-order traversal of the tree. However ...

  9. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    A postordering is a list of the vertices in the order that they were last visited by the algorithm. A postordering of an expression tree is the expression in reverse Polish notation. A reverse preordering is the reverse of a preordering, i.e. a list of the vertices in the opposite order of their first visit. Reverse preordering is not the same ...