Search results
Results From The WOW.Com Content Network
In the domain of central processing unit (CPU) design, hazards are problems with the instruction pipeline in CPU microarchitectures when the next instruction cannot execute in the following clock cycle, [1] and can potentially lead to incorrect computation results. Three common types of hazards are data hazards, structural hazards, and control ...
Analysis of parallel algorithms is usually carried out under the assumption that an unbounded number of processors is available. This is unrealistic, but not a problem, since any computation that can run in parallel on N processors can be executed on p < N processors by letting each processor execute multiple units of work.
A massively parallel processor array, also known as a multi purpose processor array (MPPA) is a type of integrated circuit which has a massively parallel array of hundreds or thousands of CPUs and RAM memories. These processors pass work to one another through a reconfigurable interconnect of channels. By harnessing a large number of processors ...
The opposite of embarrassingly parallel problems are inherently serial problems, which cannot be parallelized at all. A common example of an embarrassingly parallel problem is 3D video rendering handled by a graphics processing unit, where each frame (forward method) or pixel (ray tracing method) can be handled with no interdependency. [3]
Massively parallel is the term for using a large number of computer processors (or separate computers) to simultaneously perform a set of coordinated computations in parallel. GPUs are massively parallel architecture with tens of thousands of threads.
Explicitly parallel instruction computing (EPIC) is a term coined in 1997 by the HP–Intel alliance [1] to describe a computing paradigm that researchers had been investigating since the early 1980s. [2] This paradigm is also called Independence architectures.
With parallel components the situation is a bit more complicated: the whole system will fail if and only if after one of the components fails, the other component fails while the first component is being repaired; this is where MDT comes into play: the faster the first component is repaired, the less is the "vulnerability window" for the other ...
In digital signal processing (DSP), parallel processing is a technique duplicating function units to operate different tasks (signals) simultaneously. [1] Accordingly, we can perform the same processing for different signals on the corresponding duplicated function units.