Search results
Results From The WOW.Com Content Network
The proportionality factor is the dynamic viscosity of the fluid, often simply referred to as the viscosity. It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units :
The two regimes of dry friction are 'static friction' ("stiction") between non-moving surfaces, and kinetic friction (sometimes called sliding friction or dynamic friction) between moving surfaces. Coulomb friction, named after Charles-Augustin de Coulomb , is an approximate model used to calculate the force of dry friction.
Split friction (or μ (mu) - split) is a road condition that occurs when the friction significantly differs between the left and the right wheelpath. [1] The road may then not be perceived as hazardous when accelerating, cruising or even braking softly.
is the frictional force – known as Stokes' drag – acting on the interface between the fluid and the particle (newtons, kg m s −2); μ (some authors use the symbol η) is the dynamic viscosity (Pascal-seconds, kg m −1 s −1); R is the radius of the spherical object (meters);
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The friction drag force, which is a tangential force on the aircraft surface, depends substantially on boundary layer configuration and viscosity. The net friction drag, , is calculated as the downstream projection of the viscous forces evaluated over the body's surface. The sum of friction drag and pressure (form) drag is called viscous drag.
is a scalar constant of proportionality, the dynamic viscosity of the fluid d u d y {\displaystyle {\frac {du}{dy}}} is the derivative in the direction y, normal to x, of the flow velocity component u that is oriented along the direction x.
This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move (or "to jump") between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations.