When.com Web Search

  1. Ads

    related to: solving area of oblique triangles formula calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Mollweide's formula - Wikipedia

    en.wikipedia.org/wiki/Mollweide's_formula

    In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. [1] [2] A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel in 1746. Thomas Simpson published the now-standard expression in 1748.

  3. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    There is a full discussion in Todhunter. The article Solution of triangles#Solving spherical triangles presents variants on these methods with a slightly different notation. There is a full discussion of the solution of oblique triangles in Todhunter. [1]: Chap. VI See also the discussion in Ross. [11]

  4. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Triangulator – Triangle solver. Solve any plane triangle problem with the minimum of input data. Drawing of the solved triangle. TriSph – Free software to solve the spherical triangles, configurable to different practical applications and configured for gnomonic. Spherical Triangle Calculator – Solves spherical triangles. TrianCal ...

  5. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  6. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    The third formula shown is the result of solving for a in the quadratic equation a 2 − 2ab cos γ + b 2 − c 2 = 0. This equation can have 2, 1, or 0 positive solutions corresponding to the number of possible triangles given the data.

  7. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.

  8. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    Heron triangles have integer sides and integer area. The oblique Heron triangle with the smallest perimeter is acute, with sides (6, 5, 5). The two oblique Heron triangles that share the smallest area are the acute one with sides (6, 5, 5) and the obtuse one with sides (8, 5, 5), the area of each being 12.

  9. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.