When.com Web Search

  1. Ad

    related to: fermat's factorization method calculator soup solution free book list

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  3. Category:Integer factorization algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Integer...

    Dixon's factorization method; E. Euler's factorization method; F. Factor base; Fast Library for Number Theory; Fermat's factorization method; G. General number field ...

  4. Talk:Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Talk:Fermat's_factorization...

    -in order for a² - N to be square. As you can notice, all even N are skipped - Fermat method does not test them.. Example in hexadecimal format: Let N be 1751 16. The right digit of N is 1, from table, right digit of a can only be 1,7,9 or F. √1751 16 = 4E, so we test for a only 4F, 51, 57 and get result a² - N = 57 16 2 - 1751 16 as a perfect square.

  5. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    Yves Gallot's proth.exe has been used to find factors of large Fermat numbers. Édouard Lucas, improving Euler's above-mentioned result, proved in 1878 that every factor of the Fermat number , with n at least 2, is of the form + + (see Proth number), where k is a positive integer. By itself, this makes it easy to prove the primality of the ...

  6. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Therefore, to prove that Fermat's equation has no solutions for n > 2, it suffices to prove that it has no solutions for n = 4 and for all odd primes p. For any such odd exponent p , every positive-integer solution of the equation a p + b p = c p corresponds to a general integer solution to the equation a p + b p + c p = 0 .

  7. Fermat (computer algebra system) - Wikipedia

    en.wikipedia.org/wiki/Fermat_(computer_algebra...

    Fermat (named after Pierre de Fermat) is a program developed by Prof. Robert H. Lewis of Fordham University.It is a computer algebra system, in which items being computed can be integers (of arbitrary size), rational numbers, real numbers, complex numbers, modular numbers, finite field elements, multivariable polynomials, rational functions, or polynomials modulo other polynomials.

  8. Shanks's square forms factorization - Wikipedia

    en.wikipedia.org/wiki/Shanks's_square_forms...

    Shanks' square forms factorization is a method for integer factorization devised by Daniel Shanks as an improvement on Fermat's factorization method. The success of Fermat's method depends on finding integers x {\displaystyle x} and y {\displaystyle y} such that x 2 − y 2 = N {\displaystyle x^{2}-y^{2}=N} , where N {\displaystyle N} is the ...

  9. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    To factorize the integer n, Fermat's method entails a search for a single number a, n 1/2 < a < n−1, such that the remainder of a 2 divided by n is a square. But these a are hard to find. The quadratic sieve consists of computing the remainder of a 2 /n for several a, then finding a subset of these whose product is a square. This will yield a ...