Search results
Results From The WOW.Com Content Network
The only metal having an ionisation energy higher than some nonmetals (sulfur and selenium) is mercury. [citation needed] Mercury and its compounds have a reputation for toxicity but on a scale of 1 to 10, dimethylmercury ((CH 3) 2 Hg) (abbr. DMM), a volatile colourless liquid, has been described as a 15. It is so dangerous that scientists have ...
The addition of biocompatible alloying elements can have a serious impact on the mechanical behavior of Mg. Creating a solid solution, which is a type of alloying, is an effective method to increase the strength of metals [ 28 ] [ 29 ] [ 30 ]
The plastic deformation of ductile metals is important as it can be a sign of the potential failure of the metal. Yet, the point at which the material exhibits a ductile behavior versus a brittle behavior is not only dependent on the material itself but also on the temperature at which the stress is being applied to the material.
Metallurgy derives from the Ancient Greek μεταλλουργός, metallourgós, "worker in metal", from μέταλλον, métallon, "mine, metal" + ἔργον, érgon, "work" The word was originally an alchemist's term for the extraction of metals from minerals, the ending -urgy signifying a process, especially manufacturing: it was discussed in this sense in the 1797 Encyclopædia ...
Metals are insoluble in water or organic solvents, unless they undergo a reaction with them. Typically, this is an oxidation reaction that robs the metal atoms of their itinerant electrons, destroying the metallic bonding. However metals are often readily soluble in each other while retaining the metallic character of their bonding.
In a polycrystalline metal, grain size has a tremendous influence on the mechanical properties. Because grains usually have varying crystallographic orientations, grain boundaries arise. While undergoing deformation, slip motion will take place. Grain boundaries act as an impediment to dislocation motion for the following two reasons: 1.
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
To better visualize the anelastic behaviour appropriate mechanical models can be used. The simplest one contains three elements (two springs and a dashpot) since that is the least number of parameters necessary for a stress–strain equation describing a simple anelastic solid. This specific basic behaviour is of such importance that a material ...