Search results
Results From The WOW.Com Content Network
DNA primase is an enzyme involved in the replication of DNA and is a type of RNA polymerase. Primase catalyzes the synthesis of a short RNA (or DNA in some living organisms [ 1 ] ) segment called a primer complementary to a ssDNA (single-stranded DNA) template.
The E. Coli DnaG primase is a 581 residue monomeric protein with three functional domains, according to proteolysis studies. There is an N-terminal Zinc-binding domain (residues 1–110) where a zinc ion is tetrahedrally coordinated between one histidine and three cysteine residues, which plays a role in recognizing sequence specific DNA binding sites.
DNA polymerase alpha, like DNA primase, contains iron-sulfur clusters, that are critical in electron transport that uses DNA itself to transfer electrons at very high speeds; this process is involved in detecting DNA damage, and may also be involved in a feedback between the primase complex and the DNA polymerase alpha.
Along the DNA template, primase intersperses RNA primers that DNA polymerase uses to synthesize DNA from in the 5′→3′ direction. [1] Another example of primers being used to enable DNA synthesis is reverse transcription. Reverse transcriptase is an enzyme that uses a template strand of RNA to synthesize a complementary strand of DNA.
Ligase works to fill these nicks in, thus completing the newly replicated DNA molecule. [citation needed] The primase used in this process differs significantly between bacteria and archaea/eukaryotes. Bacteria use a primase belonging to the DnaG protein superfamily which contains a catalytic domain of the TOPRIM fold type. [34]
DNA polymerase's rapid catalysis due to its processive nature. Processivity is a characteristic of enzymes that function on polymeric substrates. In the case of DNA polymerase, the degree of processivity refers to the average number of nucleotides added each time the enzyme binds a template.
DNA polymerase III synthesizes base pairs at a rate of around 1000 nucleotides per second. [3] DNA Pol III activity begins after strand separation at the origin of replication. Because DNA synthesis cannot start de novo, an RNA primer, complementary to part of the single-stranded DNA, is synthesized by primase (an RNA polymerase): [citation ...
The primosome consists of seven proteins: DnaG primase, DnaB helicase, DnaC helicase assistant, DnaT, PriA, Pri B, and PriC. At each replication fork, the primosome is utilized once on the leading strand of DNA and repeatedly, initiating each Okazaki fragment, on the lagging DNA strand. Initially the complex formed by PriA, PriB, and PriC binds ...