Search results
Results From The WOW.Com Content Network
A plane simple closed curve is also called a Jordan curve. It is also defined as a non-self-intersecting continuous loop in the plane. [9] The Jordan curve theorem states that the set complement in a plane of a Jordan curve consists of two connected components (that is the curve divides the plane in two non-intersecting regions that are both ...
A Jordan curve or a simple closed curve in the plane R 2 is the image C of an injective continuous map of a circle into the plane, φ: S 1 → R 2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic.
This is a list of Wikipedia articles about curves used in different fields: mathematics (including geometry, statistics, and applied mathematics), ...
In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that the curve travels counterclockwise around the point, i.e., the curve's number of turns. For certain open plane curves, the number of turns may be a non-integer.
In the case of a plane simple closed curve (that is, a curve in the plane whose starting point is also the end point and which has no other self-intersections), the curve is said to be positively oriented or counterclockwise oriented, if one always has the curve interior to the left (and consequently, the curve exterior to the right), when ...
By the Jordan curve theorem, a simple closed curve divides the plane into interior and exterior regions, and another equivalent definition of a closed convex curve is that it is a simple closed curve whose union with its interior is a convex set. [9] [17] Examples of open and unbounded convex curves include the graphs of convex functions.
The closed graph theorem is an important result in functional analysis that guarantees that a closed linear operator is continuous under certain conditions. The original result has been generalized many times. A well known version of the closed graph theorems is the following.
A curve in the complex plane is defined as a continuous function from a closed interval of the real line to the complex plane: : [,]. This definition of a curve coincides with the intuitive notion of a curve, but includes a parametrization by a continuous function from a closed interval.