Search results
Results From The WOW.Com Content Network
For divisors with multiple rules, the rules are generally ordered first for those appropriate for numbers with many digits, then those useful for numbers with fewer digits. To test the divisibility of a number by a power of 2 or a power of 5 (2 n or 5 n , in which n is a positive integer), one only need to look at the last n digits of that number.
Euclidean division is the mathematical formulation of the outcome of the usual process of division of integers. It asserts that, given two integers, a, the dividend, and b, the divisor, such that b ≠ 0, there are unique integers q, the quotient, and r, the remainder, such that a = bq + r and 0 ≤ r < | b |, where | b | denotes the absolute ...
For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd.
It occurs only in exceptional cases, typically for univariate polynomials, and for integers, if the further condition r ≥ 0 is added. Examples of Euclidean domains include fields, polynomial rings in one variable over a field, and the Gaussian integers. The Euclidean division of polynomials has been the object of specific developments.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Animated example of multi-digit long division. A divisor of any number of digits can be used. In this example, 1260257 is to be divided by 37. First the problem is set up as follows: 37)1260257 Digits of the number 1260257 are taken until a number greater than or equal to 37 occurs. So 1 and 12 are less than 37, but 126 is greater.
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.