Search results
Results From The WOW.Com Content Network
In mathematics, proof by contrapositive, or proof by contraposition, is a rule of inference used in proofs, where one infers a conditional statement from its contrapositive. [15] In other words, the conclusion "if A , then B " is inferred by constructing a proof of the claim "if not B , then not A " instead.
Proof by contraposition infers the statement "if p then q" by establishing the logically equivalent contrapositive statement: "if not q then not p". For example, contraposition can be used to establish that, given an integer , if is even, then is even: Suppose is not even.
The superalternation is the contrapositive of the subalternation.) In these relations, the particular is the subaltern of the universal, which is the particular's superaltern. For example, if 'every man is white' is true, its contrary 'no man is white' is false. Therefore, the contradictory 'some man is white' is true.
Example 1. One way to demonstrate the invalidity of this argument form is with a counterexample with true premises but an obviously false conclusion. For example: If someone lives in San Diego, then they live in California. Joe lives in California. Therefore, Joe lives in San Diego. There are many places to live in California other than San Diego.
But if, as an example, this group of "some politicians" were defined to contain a single person, Albert, the relationship becomes clearer; This is the de re interpretation of the intensional statement ([]), or "Some politicians (in particular) are not corrupt". The statement would then mean that, of every entry listed in the corrupt people ...
[3] A mathematical proof employing proof by contradiction usually proceeds as follows: The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, Q and ¬Q, and appealing to the law of ...
In propositional logic, modus ponens (/ ˈ m oʊ d ə s ˈ p oʊ n ɛ n z /; MP), also known as modus ponendo ponens (from Latin 'mode that by affirming affirms'), [1] implication elimination, or affirming the antecedent, [2] is a deductive argument form and rule of inference. [3] It can be summarized as "P implies Q. P is true. Therefore, Q ...
The writing of an expository essay often consists of the following steps: organizing thoughts (brainstorming), researching a topic, developing a thesis statement, writing the introduction, writing the body of essay, and writing the conclusion. [14]