When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form + ′ + ″ + () = where a 0 (x), ..., a n (x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y (n) are the successive derivatives of an unknown function y of ...

  3. Linearity of differentiation - Wikipedia

    en.wikipedia.org/wiki/Linearity_of_differentiation

    In calculus, the derivative of any linear combination of functions equals the same linear combination of the derivatives of the functions; [1] this property is known as linearity of differentiation, the rule of linearity, [2] or the superposition rule for differentiation. [3]

  4. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  5. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.

  6. Homogeneous differential equation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_differential...

    A linear differential equation that fails this condition is called inhomogeneous. A linear differential equation can be represented as a linear operator acting on y(x) where x is usually the independent variable and y is the dependent variable. Therefore, the general form of a linear homogeneous differential equation is =

  7. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x 0 is an interior point in the domain of a function f , then f is said to be differentiable at x 0 if the derivative f ′ ( x 0 ) {\displaystyle f'(x_{0})} exists.

  8. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef WroĊ„ski, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    [a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...