Search results
Results From The WOW.Com Content Network
An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides, and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.
Circular triangles give the solution to an isoperimetric problem in which one seeks a curve of minimum length that encloses three given points and has a prescribed area. . When the area is at least as large as the circumcircle of the points, the solution is any circle of that area surrounding the poi
The triangle's nine-point circle has half the diameter of the circumcircle. In any given triangle, the circumcenter is always collinear with the centroid and orthocenter. The line that passes through all of them is known as the Euler line. The isogonal conjugate of the circumcenter is the orthocenter.
Malfatti's assumption that the two problems are equivalent is incorrect. Lob and Richmond (), who went back to the original Italian text, observed that for some triangles a larger area can be achieved by a greedy algorithm that inscribes a single circle of maximal radius within the triangle, inscribes a second circle within one of the three remaining corners of the triangle, the one with the ...
OP is a diameter of this circle, so the triangles connecting OP to the points T and T′ where the circles intersect are both right triangles. Geometric method to find p {\displaystyle {\sqrt {p}}} using the geometric mean theorem h = p q {\displaystyle h={\sqrt {pq}}} with q = 1 {\displaystyle q=1}
The nine-point circle is tangent to the incircle and excircles. In 1822 Karl Feuerbach discovered that any triangle's nine-point circle is externally tangent to that triangle's three excircles and internally tangent to its incircle; this result is known as Feuerbach's theorem. He proved that:
The integral of ds over the whole circle is just the arc length, which is its circumference, so this shows that the area A enclosed by the circle is equal to / times the circumference of the circle. Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each ...
The tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at its vertices. [ 64 ] As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the ...