When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. SN2 reaction - Wikipedia

    en.wikipedia.org/wiki/SN2_reaction

    For example, OH − is a better nucleophile than water, and I − is a better nucleophile than Br − (in polar protic solvents). In a polar aprotic solvent, nucleophilicity increases up a column of the periodic table as there is no hydrogen bonding between the solvent and nucleophile; in this case nucleophilicity mirrors basicity.

  3. Solvent effects - Wikipedia

    en.wikipedia.org/wiki/Solvent_effects

    The determining factor when both S N 2 and S N 1 reaction mechanisms are viable is the strength of the Nucleophile. Nuclephilicity and basicity are linked and the more nucleophilic a molecule becomes the greater said nucleophile's basicity. This increase in basicity causes problems for S N 2 reaction mechanisms when the solvent of choice is protic.

  4. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    It is important to use a protic solvent, water and alcohols, since an aprotic solvent could attack the intermediate and cause unwanted product. It does not matter if the hydrogens from the protic solvent react with the nucleophile since the nucleophile is not involved in the rate determining step.

  5. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    A reaction mechanism was first introduced by Christopher Ingold et al. in 1940. [3] This reaction does not depend much on the strength of the nucleophile, unlike the S N 2 mechanism. This type of mechanism involves two steps. The first step is the ionization of alkyl halide in the presence of aqueous acetone or ethyl alcohol.

  6. Polar aprotic solvent - Wikipedia

    en.wikipedia.org/wiki/Polar_aprotic_solvent

    A polar aprotic solvent is a solvent that lacks an acidic proton and is polar. Such solvents lack hydroxyl and amine groups. In contrast to protic solvents, these solvents do not serve as proton donors in hydrogen bonding, although they can be proton acceptors. Many solvents, including chlorocarbons and hydrocarbons, are classifiable as aprotic ...

  7. Solvent - Wikipedia

    en.wikipedia.org/wiki/Solvent

    The following table shows that the intuitions from "non-polar", "polar aprotic" and "polar protic" are put numerically – the "polar" molecules have higher levels of δP and the protic solvents have higher levels of δH. Because numerical values are used, comparisons can be made rationally by comparing numbers.

  8. Protic solvent - Wikipedia

    en.wikipedia.org/wiki/Protic_solvent

    In general terms, any solvent that contains a labile H + is called a protic solvent. The molecules of such solvents readily donate protons (H +) to solutes, often via hydrogen bonding. Water is the most common protic solvent. Conversely, polar aprotic solvents cannot donate protons but still have the ability to dissolve many salts. [1] [2]

  9. Associative substitution - Wikipedia

    en.wikipedia.org/wiki/Associative_substitution

    The terminology is typically applied to organometallic and coordination complexes, but resembles the Sn2 mechanism in organic chemistry. The opposite pathway is dissociative substitution, being analogous to the Sn1 pathway. Intermediate pathways exist between the pure associative and pure dissociative pathways, these are called interchange ...