Search results
Results From The WOW.Com Content Network
The infrared atmospheric window is an atmospheric window in the infrared spectrum where there is relatively little absorption of terrestrial thermal radiation by atmospheric gases. [1] The window plays an important role in the atmospheric greenhouse effect by maintaining the balance between incoming solar radiation and outgoing IR to space.
(Above the atmosphere, the result is even higher: 394 K (121 °C; 250 °F).) We can think of the earth's surface as "trying" to reach equilibrium temperature during the day, but being cooled by the atmosphere, and "trying" to reach equilibrium with starlight and possibly moonlight at night, but being warmed by the atmosphere.
In such applications, radiative transfer codes are often called radiation parameterization. In these applications, the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere, one calculates heating rates, radiative fluxes, and radiances. There are efforts for intercomparison of radiation codes.
A theoretical model considered by Planck consists of a cavity with perfectly reflecting walls, initially with no material contents, into which is then put a small piece of carbon. Without the small piece of carbon, there is no way for non-equilibrium radiation initially in the cavity to drift towards thermodynamic equilibrium.
Atmospheric windows are useful for astronomy, remote sensing, telecommunications and other science and technology applications. In the study of the greenhouse effect, the term atmospheric window may be limited to mean the infrared window, which is the primary escape route for a fraction of the thermal radiation emitted near the surface.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Within the atmospheric sciences, atmospheric physics is the application of physics to the study of the atmosphere.Atmospheric physicists attempt to model Earth's atmosphere and the atmospheres of the other planets using fluid flow equations, radiation budget, and energy transfer processes in the atmosphere (as well as how these tie into boundary systems such as the oceans).
For the flux density received from a remote unresolvable "point source", the measuring instrument, usually telescopic, though not able to resolve any detail of the source itself, must be able to optically resolve enough details of the sky around the point source, so as to record radiation coming from it only, uncontaminated by radiation from other sources.