Search results
Results From The WOW.Com Content Network
The q-value can be interpreted as the false discovery rate (FDR): the proportion of false positives among all positive results. Given a set of test statistics and their associated q-values, rejecting the null hypothesis for all tests whose q-value is less than or equal to some threshold ensures that the expected value of the false discovery rate is .
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: Q = gap range {\displaystyle Q={\frac {\text{gap}}{\text{range}}}} Where gap is the absolute difference between the outlier in question and the closest number to it.
Q factor (bicycles), the width between where a bicycle's pedals attach to the cranks; q-value (statistics), the minimum false discovery rate at which the test may be called significant; Q value (nuclear science), a difference of energies of parent and daughter nuclides; Q Score, in marketing, a way to measure the familiarity of an item
The Q-statistic or q-statistic is a test statistic: . The Box-Pierce test outputs a Q-statistic (uppercase) which follows the chi-squared distribution . The Ljung-Box test is a modified version of the Box-Pierce test which provides better small sample properties
This expect-value is the product of the number of tests and the p-value. The q-value is the analog of the p-value with respect to the positive false discovery rate. [50] It is used in multiple hypothesis testing to maintain statistical power while minimizing the false positive rate. [51]
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
For a population, of discrete values or for a continuous population density, the k-th q-quantile is the data value where the cumulative distribution function crosses k/q. That is, x is a k-th q-quantile for a variable X if Pr[X < x] ≤ k/q or, equivalently, Pr[X ≥ x] ≥ 1 − k/q. and Pr[X ≤ x] ≥ k/q.