When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    If a second-order differential equation has a characteristic equation with complex conjugate roots of the form r 1 = a + bi and r 2 = a − bi, then the general solution is accordingly y(x) = c 1 e (a + bi )x + c 2 e (a − bi )x. By Euler's formula, which states that e iθ = cos θ + i sin θ, this solution can be rewritten as follows:

  3. Unit root - Wikipedia

    en.wikipedia.org/wiki/Unit_root

    The first order autoregressive model, = +, has a unit root when =.In this example, the characteristic equation is =.The root of the equation is =.. If the process has a unit root, then it is a non-stationary time series.

  4. Characteristic multiplier - Wikipedia

    en.wikipedia.org/wiki/Characteristic_multiplier

    In mathematics, and particularly ordinary differential equations, a characteristic multiplier is an eigenvalue of a monodromy matrix. The logarithm of a characteristic multiplier is also known as characteristic exponent. [1] They appear in Floquet theory of periodic differential operators and in the Frobenius method.

  5. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    As an example, consider the advection equation (this example assumes familiarity with PDE notation, and solutions to basic ODEs). + = where is constant and is a function of and . We want to transform this linear first-order PDE into an ODE along the appropriate curve; i.e. something of the form

  6. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor (possibly negative). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. Its eigenvectors are those ...

  7. Characteristic equation - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation

    Characteristic equation may refer to: Characteristic equation (calculus), used to solve linear differential equations; Characteristic equation, the equation obtained by equating to zero the characteristic polynomial of a matrix or of a linear mapping; Method of characteristics, a technique for solving partial differential equations

  8. Purely inseparable extension - Wikipedia

    en.wikipedia.org/wiki/Purely_inseparable_extension

    Purely inseparable extensions do occur naturally; for example, they occur in algebraic geometry over fields of prime characteristic. If K is a field of characteristic p , and if V is an algebraic variety over K of dimension greater than zero, the function field K ( V ) is a purely inseparable extension over the subfield K ( V ) p of p th powers ...

  9. Characteristic (algebra) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_(algebra)

    For example, if p is prime and q(X) is an irreducible polynomial with coefficients in the field with p elements, then the quotient ring [] / (()) is a field of characteristic p. Another example: The field C {\displaystyle \mathbb {C} } of complex numbers contains Z {\displaystyle \mathbb {Z} } , so the characteristic of C {\displaystyle \mathbb ...