When.com Web Search

  1. Ads

    related to: matrix representations and homogeneous coordinates practice exercises worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    In homogeneous coordinates, the point (,,) is represented by (,,,) and the point it maps to on the plane is represented by (,,), so projection can be represented in matrix form as Matrices representing other geometric transformations can be combined with this and each other by matrix multiplication. As a result, any perspective projection of ...

  3. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    With respect to an n-dimensional matrix, an n+1-dimensional matrix can be described as an augmented matrix. In the physical sciences , an active transformation is one which actually changes the physical position of a system , and makes sense even in the absence of a coordinate system whereas a passive transformation is a change in the ...

  4. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Each Plücker coordinate appears in two of the four equations, each time multiplying a different variable; and as at least one of the coordinates is nonzero, we are guaranteed non-vacuous equations for two distinct planes intersecting in L. Thus the Plücker coordinates of a line determine that line uniquely, and the map α is an injection.

  5. Laguerre transformations - Wikipedia

    en.wikipedia.org/wiki/Laguerre_transformations

    It's possible to express the above line coordinates as homogeneous coordinates = [⁡ (+): ⁡ (+)] where is the perpendicular distance of the line from the origin. This representation has numerous advantages: One advantage is that there is no need to break into different cases, such as parallel to the x {\displaystyle x} -axis and non-parallel.

  6. Cayley transform - Wikipedia

    en.wikipedia.org/wiki/Cayley_transform

    Cayley transform of upper complex half-plane to unit disk. On the upper half of the complex plane, the Cayley transform is: [1] [2] = +.Since {,,} is mapped to {,,}, and Möbius transformations permute the generalised circles in the complex plane, maps the real line to the unit circle.

  7. Möbius transformation - Wikipedia

    en.wikipedia.org/wiki/Möbius_transformation

    Here [z 1:z 2] are homogeneous coordinates on CP 1; the point [1:0] corresponds to the point ∞ of the Riemann sphere. By using homogeneous coordinates, many calculations involving Möbius transformations can be simplified, since no case distinctions dealing with ∞ are required.

  8. Matrix representation - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation

    Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" ( AoS ), in which all the elements for a given column are stored contiguously in memory.

  9. Camera matrix - Wikipedia

    en.wikipedia.org/wiki/Camera_matrix

    The camera matrix derived in the previous section has a null space which is spanned by the vector = This is also the homogeneous representation of the 3D point which has coordinates (0,0,0), that is, the "camera center" (aka the entrance pupil; the position of the pinhole of a pinhole camera) is at O.

  1. Related searches matrix representations and homogeneous coordinates practice exercises worksheet

    homogeneous coordinates mathhomogeneous coordinates definition
    homogeneous coordinates examples