When.com Web Search

  1. Including results for

    matlab mod 2 j k bank

    Search only for matlab mod 2 j n k bank

Search results

  1. Results From The WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  3. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n.

  4. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    For example, mod(2*J,n) will multiply every element in J by 2, and then reduce each element modulo n. MATLAB does include standard for and while loops, but (as in other similar applications such as APL and R), using the vectorized notation is encouraged and is often faster to execute.

  5. Stirling numbers of the second kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    To see this, first note that there are 2 n ordered pairs of complementary subsets A and B. In one case, A is empty, and in another B is empty, so 2 n2 ordered pairs of subsets remain. Finally, since we want unordered pairs rather than ordered pairs we divide this last number by 2, giving the result above.

  6. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.

  7. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    Modulo 2, every integer is a quadratic residue. Modulo an odd prime number p there are (p + 1)/2 residues (including 0) and (p − 1)/2 nonresidues, by Euler's criterion.In this case, it is customary to consider 0 as a special case and work within the multiplicative group of nonzero elements of the field (/).

  8. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Use the extended Euclidean algorithm to compute k −1, the modular multiplicative inverse of k mod 2 w, where w is the number of bits in a word. This inverse will exist since the numbers are odd and the modulus has no odd factors. For each number in the list, multiply it by k −1 and take the least significant word of the result.

  9. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n2 + ··· + a k X nk) mod m for k2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.