Search results
Results From The WOW.Com Content Network
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
Equivalently, it is the set of vertices with eccentricity equal to the graph's radius. [3] Thus vertices in the center (central points) minimize the maximal distance from other points in the graph. This is also known as the vertex 1-center problem and can be extended to the vertex k-center problem.
For example, to view the eccentricity of the planet Mercury (e = 0.2056), one must simply calculate the inverse sine to find the projection angle of 11.86 degrees. Then, tilting any circular object by that angle, the apparent ellipse of that object projected to the viewer's eye will be of the same eccentricity.
In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.
The numbers show each node's eccentricity. In the mathematical subfield of graph theory, a centered tree is a tree with only one center, and a bicentered tree is a tree with two centers. Given a graph, the eccentricity of a vertex v is defined as the greatest distance from v to any other vertex. A center of a graph is a vertex with minimal ...
The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory. It is also known as the marriage problem , the sultan's dowry problem , the fussy suitor problem , the googol game , and the best choice problem .
In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and ...
Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It is denoted here by α (alpha). It may be defined in terms of the eccentricity , e , or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis ):