When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Partial oxidation - Wikipedia

    en.wikipedia.org/wiki/Partial_oxidation

    In CPOX (catalytic partial oxidation) the use of a catalyst reduces the required temperature to around 800°C – 900°C. [citation needed] The choice of reforming technique depends on the sulfur content of the fuel being used. CPOX can be employed if the sulfur content is below 50 ppm. A higher sulfur content can poison the catalyst, so the ...

  3. Small stationary reformer - Wikipedia

    en.wikipedia.org/wiki/Small_stationary_reformer

    A membrane reactor is a device where oxygen separation, steam reforming and POX is combined in a single step. In 1997 Argonne National Laboratory and Amoco published a paper "Ceramic membrane reactor for converting methane to syngas" [3] which resulted in different small scale systems that combined an ATR based oxygen membrane with a water-gas shift reactor and a hydrogen membrane.

  4. Methane reformer - Wikipedia

    en.wikipedia.org/wiki/Methane_reformer

    A methane reformer is a device based on steam reforming, autothermal reforming or partial oxidation and is a type of chemical synthesis which can produce pure hydrogen gas from methane using a catalyst. There are multiple types of reformers in development but the most common in industry are autothermal reforming (ATR) and steam methane ...

  5. Chemical looping reforming and gasification - Wikipedia

    en.wikipedia.org/wiki/Chemical_looping_reforming...

    Chemical looping systems can directly be engaged as an effective means for syngas production. Compared to the conventional partial oxidation (POX) or autothermal reforming (ATR) processes, the key advantage of the chemical looping reforming (CLR) process is the elimination of the air separation unit (ASU) for oxygen production. The gaseous fuel ...

  6. Steam reforming - Wikipedia

    en.wikipedia.org/wiki/Steam_reforming

    Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is often hydrogen production , although syngas has multiple other uses such as production of ammonia or methanol .

  7. Shilov system - Wikipedia

    en.wikipedia.org/wiki/Shilov_system

    Shilov cycle The overall charge is omitted from the complexes since the exact coordination sphere of the active species is unknown.. The Shilov system is a classic example of catalytic C-H bond activation and oxidation which preferentially activates stronger C-H bonds over weaker C-H bonds for an overall partial oxidation.

  8. Catalytic reforming - Wikipedia

    en.wikipedia.org/wiki/Catalytic_reforming

    The sensitivity of catalytic reforming to contamination by sulfur and nitrogen requires hydrotreating the naphtha before it enters the reformer, adding to the cost and complexity of the process. Dehydrogenation, an important component of reforming, is a strongly endothermic reaction, and as such, requires the reactor vessel to be externally heated.

  9. Catalytic oxidation - Wikipedia

    en.wikipedia.org/wiki/Catalytic_oxidation

    Catalytic oxidation are processes that rely on catalysts to introduce oxygen into organic and inorganic compounds. Many applications, including the focus of this article, involve oxidation by oxygen. Such processes are conducted on a large scale for the remediation of pollutants, production of valuable chemicals, and the production of energy. [1]