Search results
Results From The WOW.Com Content Network
The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [1] [2] [3] The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842.
The phase velocity c p (blue) and group velocity c g (red) as a function of water depth h for surface gravity waves of constant frequency, according to Airy wave theory. Quantities have been made dimensionless using the gravitational acceleration g and period T , with the deep-water wavelength given by L 0 = gT 2 /(2π) and the deep-water phase ...
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
Frequency dispersion in groups of gravity waves on the surface of deep water. The red square moves with the phase velocity, and the green circles propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square overtakes two green circles when moving from the left to the right of the figure.
Often when considering rotating shafts, only the first natural frequency is needed. There are two main methods used to calculate critical speed—the Rayleigh–Ritz method and Dunkerley's method. Both calculate an approximation of the first natural frequency of vibration, which is assumed to be nearly equal to the critical speed of rotation.
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
When the relative velocity is zero, is simply equal to 1, and the relativistic mass is reduced to the rest mass as one can see in the next two equations below. As the velocity increases toward the speed of light c , the denominator of the right side approaches zero, and consequently γ {\displaystyle \gamma } approaches infinity.
A modulated wave resulting from adding two sine waves of identical amplitude and nearly identical wavelength and frequency. A common situation resulting in an envelope function in both space x and time t is the superposition of two waves of almost the same wavelength and frequency: [2]