When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    A depth-first search ordering (not necessarily the lexicographic one), can be computed by a randomized parallel algorithm in the complexity class RNC. [14] As of 1997, it remained unknown whether a depth-first traversal could be constructed by a deterministic parallel algorithm, in the complexity class NC. [15]

  3. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  4. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  5. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.

  6. External memory graph traversal - Wikipedia

    en.wikipedia.org/.../External_memory_graph_traversal

    Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...

  7. Topological sorting - Wikipedia

    en.wikipedia.org/wiki/Topological_sorting

    An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):

  8. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    A stack (LIFO queue) will yield a depth-first algorithm. A best-first branch and bound algorithm can be obtained by using a priority queue that sorts nodes on their lower bound. [3] Examples of best-first search algorithms with this premise are Dijkstra's algorithm and its descendant A* search. The depth-first variant is recommended when no ...

  9. Control-flow graph - Wikipedia

    en.wikipedia.org/wiki/Control-flow_graph

    3: (B) goto 5 4: (C) print t0 + " is odd." 5: (D) end program In the above, we have 4 basic blocks: A from 0 to 1, B from 2 to 3, C at 4 and D at 5. In particular, in this case, A is the "entry block", D the "exit block" and lines 4 and 5 are jump targets. A graph for this fragment has edges from A to B, A to C, B to D and C to D.