Search results
Results From The WOW.Com Content Network
In 1905, Albert Einstein published a paper advancing the hypothesis that light energy is carried in discrete quantized packets to explain experimental data from the photoelectric effect. Einstein theorized that the energy in each quantum of light was equal to the frequency of light multiplied by a constant, later called the Planck constant. A ...
Einstein's explanation of the photoelectric effect extended the quantum theory which Max Planck had developed in his successful explanation of black-body radiation. Despite the greater fame achieved by his other works, such as that on special relativity, it was his work on the photoelectric effect that won him his Nobel Prize in 1921. [9]
To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is the Planck constant and ν is the wave frequency.
As shown by Albert Einstein, [10] [53] some form of energy quantization must be assumed to account for the thermal equilibrium observed between matter and electromagnetic radiation; for this explanation of the photoelectric effect, Einstein received the 1921 Nobel Prize in physics. [54]
The photoelectric effect: Einstein explained this in 1905 (and later received a Nobel prize for it) using the concept of photons, particles of light with quantized energy. Robert Millikan's oil-drop experiment, which showed that electric charge occurs as quanta (whole units). (1909)
XPS physics - the photoelectric effect.. Because the energy of an X-ray with particular wavelength is known (for Al K α X-rays, E photon = 1486.7 eV), and because the emitted electrons' kinetic energies are measured, the electron binding energy of each of the emitted electrons can be determined by using the photoelectric effect equation,
Ch.2 Building on this idea, Albert Einstein proposed in 1905 an explanation for the photoelectric effect, that light is composed of individual packets of energy called photons (the quanta of light). This implied that the electromagnetic radiation, while being waves in the classical electromagnetic field, also exists in the form of particles.
After Bohr's use of Einstein's explanation of the photoelectric effect to relate energy levels in atoms with the wavelength of emitted light, the connection between the structure of electrons in atoms and the emission and absorption spectra of atoms became an increasingly useful tool in the understanding of electrons in atoms. The most ...