Search results
Results From The WOW.Com Content Network
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients).
The total or sum of the baker's percentages is called the formula percentage. The sum of the ingredient masses is called the formula mass (or formula "weight"). Here are some interesting calculations: The flour's mass times the formula percentage equals the formula mass: [11]
Mathematically, density is defined as mass divided by volume: [1] =, where ρ is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume , [ 2 ] although this is scientifically inaccurate – this quantity is more ...
Gas stoichiometry calculations solve for the unknown volume or mass of a gaseous product or reactant. For example, if we wanted to calculate the volume of gaseous NO 2 produced from the combustion of 100 g of NH 3, by the reaction: 4 NH 3 (g) + 7 O 2 (g) → 4 NO 2 (g) + 6 H 2 O (l) we would carry out the following calculations:
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Using the number density as a function of spatial coordinates, the total number of objects N in the entire volume V can be calculated as = (,,), where dV = dx dy dz is a volume element. If each object possesses the same mass m 0 , the total mass m of all the objects in the volume V can be expressed as m = ∭ V m 0 n ( x , y , z ) d V ...