When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani. [1] Suppose we expect a response variable to be determined by a linear combination of a subset of potential covariates.

  3. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  4. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    Unlike Tikhonov regularization, this scheme does not have a convenient closed-form solution: instead, the solution is typically found using quadratic programming or more general convex optimization methods, as well as by specific algorithms such as the least-angle regression algorithm.

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The partial least squares regression is the extension of the PCR method which does not suffer from the mentioned deficiency. Least-angle regression [6] is an estimation procedure for linear regression models that was developed to handle high-dimensional covariate vectors, potentially with more covariates than observations.

  6. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters ⁠ ⁠ of the model curve (,) so that the sum of the squares of the deviations () is minimized:

  7. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    Lasso-regularized models can be fit using techniques including subgradient methods, least-angle regression (LARS), and proximal gradient methods. Determining the optimal value for the regularization parameter is an important part of ensuring that the model performs well; it is typically chosen using cross-validation.

  8. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS can be used for ℓ 1 minimization and smoothed ℓ p minimization, p < 1, in compressed sensing problems. It has been proved that the algorithm has a linear rate of convergence for ℓ 1 norm and superlinear for ℓ t with t < 1, under the restricted isometry property, which is generally a sufficient condition for sparse solutions.

  9. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.