Search results
Results From The WOW.Com Content Network
The first of these quantities is used in atomic physics, the second in chemistry, but both refer to the same basic property of the element. To convert from "value of ionization energy" to the corresponding "value of molar ionization energy", the conversion is: 1 eV = 96.48534 kJ/mol 1 kJ/mol = 0.0103642688 eV [12]
The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1. (for predictions) Cotton, Simon (2006). Lanthanide and Actinide Chemistry. John Wiley & Sons Ltd. Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties".
1 kJ/mol, converted to energy per molecule [9] 2.1×10 −21 J Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV) [10] 2.856×10 −21 J By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information 3–7×10 −21 J
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...
It is common in electrochemistry and solid-state physics to discuss both the chemical potential and the electrochemical potential of the electrons.However, in the two fields, the definitions of these two terms are sometimes swapped.
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings.One such equation involves the enthalpy change, which is denoted with In variable form, a thermochemical equation would appear similar to the following: