Search results
Results From The WOW.Com Content Network
More generally, in measure theory and probability theory, either sort of mean plays an important role. In this context, Jensen's inequality places sharp estimates on the relationship between these two different notions of the mean of a function. There is also a harmonic average of functions and a quadratic average (or root mean square) of ...
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
The arithmetic mean (or simply mean or average) of a list of numbers, is the sum of all of the numbers divided by their count.Similarly, the mean of a sample ,, …,, usually denoted by ¯, is the sum of the sampled values divided by the number of items in the sample.
The bootstrap is generally useful for estimating the distribution of a statistic (e.g. mean, variance) without using normality assumptions (as required, e.g., for a z-statistic or a t-statistic). In particular, the bootstrap is useful when there is no analytical form or an asymptotic theory (e.g., an applicable central limit theorem ) to help ...
Average of chords. In ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean – the sum of the numbers divided by how many numbers are in the list.
Pie Corbett (born 3 April 1954) is an English educational trainer, writer, author and poet who has written more than two hundred books. He is now best known for creating the Talk for Writing approach to learning, which is widely used within UK primary schools.
The arithmetic mean of a population, or population mean, is often denoted μ. [2] The sample mean ¯ (the arithmetic mean of a sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is equal to the population mean (that is, it is an unbiased estimator).
To estimate μ based on the first n observations, one can use the sample mean: T n = (X 1 + ... + X n)/n. This defines a sequence of estimators, indexed by the sample size n. From the properties of the normal distribution, we know the sampling distribution of this statistic: T n is itself normally distributed, with mean μ and variance σ 2 /n.