Search results
Results From The WOW.Com Content Network
Methane monooxygenase (MMO) is an enzyme capable of oxidizing the C-H bond in methane as well as other alkanes. [1] Methane monooxygenase belongs to the class of oxidoreductase enzymes (EC 1.14.13.25). There are two forms of MMO: the well-studied soluble form (sMMO) and the particulate form (pMMO). [2]
The overall reactions are: CH 4 + 4 NO 3 − → CO 2 + 4 NO 2 − + 2 H 2 O 3 CH 4 + 8 NO 2 − + 8 H + → 3 CO 2 + 4 N 2 + 10 H 2 O. ANME-2d is shown to be responsible nitrate-driven AOM. [5] The ANME-2d, named Methanoperedens nitroreducens, is able to perform nitrate-driven AOM without a partner organism via reverse methanogenesis with nitrate as the terminal electron acceptor, using genes ...
Cells containing pMMO have demonstrated higher growth capabilities and higher affinity for methane than sMMO containing cells. [7] It is suspected that copper ions may play a key role in both pMMO regulation and the enzyme catalysis, thus limiting pMMO cells to more copper-rich environments than sMMO producing cells. [30]
the reaction steps presented here are just a part of the reaction sequence, see reference for more details. Photocatalytic oxidation with TiO 2: [15] TiO 2 + UV → e − + h + (irradiation of the photocatalytic surface leads to an excited electron (e −) and electron gap (h +)) Ti(IV) + H 2 O ⇌ Ti(IV)-H 2 O (water adsorbs onto the catalyst ...
The chemical reactions and mechanism in the blue bottle experiment rely on the oxidation of a sugar with the aid of air and a redox dye in a basic solution. Other variations of this reaction have been reported that use four families of redox dyes: thiazines , oxazines , azines , and indigo carmine have all been reported to work with glucose and ...
Some organisms can oxidize methane, functionally reversing the process of methanogenesis, also referred to as the anaerobic oxidation of methane (AOM). Organisms performing AOM have been found in multiple marine and freshwater environments including methane seeps, hydrothermal vents, coastal sediments and sulfate-methane transition zones. [8]
Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond. This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [ 1 ] as ...
This has been used to argue that water is the source of electrons for reducing the bound metal ion. Others have suggested that the disulfide bridge in methanobactin's structure is the source of the electron, though XPS has shown that this bond is still intact in copper-bound methanobactin. [ 6 ]