Search results
Results From The WOW.Com Content Network
Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences. [1] Protein synthesis can be divided broadly into two phases: transcription and translation. During transcription, a section of DNA encoding a protein, known as a gene, is converted into a molecule called messenger RNA (mRNA).
If a protein source is missing critical EAAs, then its biological value will be low as the missing EAAs form a bottleneck in protein synthesis. For example, if a hypothetical muscle protein requires phenylalanine (an essential amino acid), then this must be provided in the diet for the muscle protein to be produced. If the current protein ...
Protein biosynthesis (long peptides) in living organisms occurs in the opposite direction. The chemical synthesis of peptides can be carried out using classical solution-phase techniques, although these have been replaced in most research and development settings by solid-phase methods (see below). [3]
It states that such information cannot be transferred back from protein to either protein or nucleic acid." [6] A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965).
This gave rise to the de novo protein synthesis theory: the formation of a long-term memory requires the synthesis of new proteins. Eric Kandel established many of the biochemical markers of learning and memory in the Aplysia (California sea slug) in the 1970s, as his findings suggested potential pathways surrounding protein synthesis. [ 2 ]
The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in the addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code.
This method allows one to measure the three-dimensional (3-D) density distribution of electrons in the protein, in the crystallized state, and thereby infer the 3-D coordinates of all the atoms to be determined to a certain resolution. Roughly 7% of the known protein structures have been obtained by nuclear magnetic resonance (NMR) techniques. [28]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more