Search results
Results From The WOW.Com Content Network
The flames caused as a result of a fuel undergoing combustion (burning) Air pollution abatement equipment provides combustion control for industrial processes.. Combustion, or burning, [1] is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke.
Hence even the simplest combustion reaction involves very tedious and rigorous calculation if all the intermediate steps of the combustion process, all transport equations and all flow equations have to be satisfied simultaneously. All these factors will have a significant effect on the computational speed and time of the simulation.
Combustion analysis is a method used in both organic chemistry and analytical chemistry to determine the elemental composition (more precisely empirical formula) of a pure organic compound by combusting the sample under conditions where the resulting combustion products can be quantitatively analyzed.
The burning of a solid material may appear to lose weight if the mass of combustion gases (such as carbon dioxide and water vapor) are not taken into account. The original mass of flammable material and the mass of the oxygen consumed (typically from the surrounding air) equals the mass of the flame products (ash, water, carbon dioxide, and ...
Amable Liñán introduced a modified mixture fraction in 1991 [6] [7] that is appropriate for systems where the fuel and oxidizer have different Lewis numbers. If L e F {\displaystyle Le_{F}} and L e O 2 {\displaystyle Le_{O_{2}}} are the Lewis number of the fuel and oxidizer, respectively, then Liñán's mixture fraction is defined as
For a one-step irreversible chemistry, i.e., +, the planar, adiabatic flame has explicit expression for the burning velocity derived from activation energy asymptotics when the Zel'dovich number The reaction rate ω {\displaystyle \omega } (number of moles of fuel consumed per unit volume per unit time) is taken to be Arrhenius form ,
In chemistry, the burn rate (or burning rate) is a measure of the linear combustion rate of a compound or substance such as a candle or a solid propellant. It is measured in length over time, such as millimeters per second or inches per second. Among the variables affecting burn rate are pressure and temperature.
Computational models for simulating combustion and heat release rates of HCCI engines require detailed chemistry models. [17] [26] [27] This is largely because ignition is more sensitive to chemical kinetics than to turbulence/spray or spark processes as are typical in SI and diesel engines. Computational models have demonstrated the importance ...