Search results
Results From The WOW.Com Content Network
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
A sigma factor is a protein needed only for initiation of RNA synthesis in bacteria. [12] Sigma factors provide promoter recognition specificity to the RNA polymerase (RNAP) and contribute to DNA strand separation, then dissociating from the RNA polymerase core enzyme following transcription initiation. [13]
The amount of transcription factories found per nucleus appears to be determined by cell type, species and the type of measurement. Cultured mouse embryonic fibroblasts have been found to have roughly 1500 factories through immunofluorescence detection of RNAP II however cells taken from different tissues of the same mouse group had between 100 ...
Transcription factors are essential for the regulation of gene expression and are, as a consequence, found in all living organisms. The number of transcription factors found within an organism increases with genome size, and larger genomes tend to have more transcription factors per gene. [14]
A sigma factor (σ factor or specificity factor) is a protein needed for initiation of transcription in bacteria. [1] [2] It is a bacterial transcription initiation factor that enables specific binding of RNA polymerase (RNAP) to gene promoters. It is homologous to archaeal transcription factor B and to eukaryotic factor TFIIB. [3]
Thus translation and transcription are parallel processes. Bacterial mRNA are usually polycistronic and contain multiple ribosome binding sites. Translation initiation is the most highly regulated step of protein synthesis in prokaryotes. [5] The rate of translation depends on two factors: the rate at which a ribosome is recruited to the RBS
transcription factor – a substance, such as a protein, that contributes to the cause of a specific biochemical reaction or bodily process; promoter – a region of DNA that initiates transcription of a particular gene; Sigma factor – specialized bacterial co-factors that complex with RNA Polymerase and encode sequence specificity
The TATA box is also found in 40% of the core promoters of genes that code for the actin cytoskeleton and contractile apparatus in cells. [5] The type of core promoter affects the level of transcription and expression of a gene. TATA-binding protein (TBP) can be recruited in two ways, by SAGA, a cofactor for RNA polymerase II, or by TFIID. [11]