Search results
Results From The WOW.Com Content Network
In his view, this contradicts the claims that Einstein worked in relative isolation and with limited access to the scientific literature. Among the papers reviewed in the Beiblätter in the fourth (of 24) issue of 1905, there is a review of Lorentz' 1904 paper by Richard Gans, which contains the Lorentz transformations. In Logunov's view, this ...
Albert Einstein, physicist, 1879-1955, Graphic: Heikenwaelder Hugo,1999. Special relativity is a theory of the structure of spacetime. It was introduced in Einstein's 1905 paper "On the Electrodynamics of Moving Bodies" (for the contributions of many other physicists and mathematicians, see History of special relativity).
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time.In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates: [p 1] [1] [2]
Albert Einstein's discovery of the gravitational field equations of general relativity and David Hilbert's almost simultaneous derivation of the theory using an elegant variational principle, [B 1]: 170 during a period when the two corresponded frequently, has led to numerous historical analyses of their interaction.
He described Einstein's theory as a "generalization" of Lorentz's theory and, to this "Lorentz–Einstein Theory", he gave the name "relative theory"; while Alfred Bucherer changed Planck's nomenclature into the now common "theory of relativity" ("Einsteinsche Relativitätstheorie"). On the other hand, Einstein himself and many others continued ...
In physics (specifically, the kinetic theory of gases), the Einstein relation is a previously unexpected [clarification needed] connection revealed independently by William Sutherland in 1904, [1] [2] [3] Albert Einstein in 1905, [4] and by Marian Smoluchowski in 1906 [5] in their works on Brownian motion.
The two-postulate basis for special relativity is the one historically used by Einstein, and it is sometimes the starting point today. As Einstein himself later acknowledged, the derivation of the Lorentz transformation tacitly makes use of some additional assumptions, including spatial homogeneity, isotropy, and memorylessness. [3]
Relative to K′ the mechanical laws of Galilei-Newton hold good exactly as they do with respect to K. We advance a step farther in our generalisation when we express the tenet thus: If, relative to K , K′ , is a uniformly moving co-ordinate system devoid of rotation, then natural phenomena run their course with respect to K′ according to ...