When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    A learning rate schedule changes the learning rate during learning and is most often changed between epochs/iterations. This is mainly done with two parameters: decay and momentum. There are many different learning rate schedules but the most common are time-based, step-based and exponential. [4]

  3. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    To calculate the recall for a given class, we divide the number of true positives by the prevalence of this class (number of times that the class occurs in the data sample). The class-wise precision and recall values can then be combined into an overall multi-class evaluation score, e.g., using the macro F1 metric. [21]

  4. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The entropy rate of a data source is the average number of bits per symbol needed to encode it. Shannon's experiments with human predictors show an information rate between 0.6 and 1.3 bits per character in English; [22] the PPM compression algorithm can achieve a compression ratio of 1.5 bits per character in English text.

  5. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

  6. Learning curve - Wikipedia

    en.wikipedia.org/wiki/Learning_curve

    A learning curve is a graphical representation of the relationship between how proficient people are at a task and the amount of experience they have. Proficiency (measured on the vertical axis) usually increases with increased experience (the horizontal axis), that is to say, the more someone, groups, companies or industries perform a task, the better their performance at the task.

  7. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    For iterative methods, one common practical approach is to discuss these rates in terms of the number of iterates or the computer time required to reach close neighborhoods of a limit from starting points far from the limit. The non-asymptotic rate is then an inverse of that number of iterates or computer time.

  8. The United States has 650 butterfly species, but 96 species were so sparse they didn’t show up in the data and another 212 species weren’t found in sufficient number to calculate trends, said ...

  9. Lift (data mining) - Wikipedia

    en.wikipedia.org/wiki/Lift_(data_mining)

    In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.