Search results
Results From The WOW.Com Content Network
For example, group theory is used to show that optical transitions between certain quantum levels cannot occur simply because of the symmetry of the states involved. [53] Group theory helps predict the changes in physical properties that occur when a material undergoes a phase transition, for example, from a cubic to a tetrahedral crystalline form.
The group consists of the finite strings (words) that can be composed by elements from A, together with other elements that are necessary to form a group. Multiplication of strings is defined by concatenation, for instance (abb) • (bca) = abbbca. Every group (G, •) is basically a factor group of a free group generated by G.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).
In the theory of Coxeter groups, the symmetric group is the Coxeter group of type A n and occurs as the Weyl group of the general linear group. In combinatorics , the symmetric groups, their elements ( permutations ), and their representations provide a rich source of problems involving Young tableaux , plactic monoids , and the Bruhat order .
If the group operation is denoted as a multiplication, the order of an element a of a group, is thus the smallest positive integer m such that a m = e, where e denotes the identity element of the group, and a m denotes the product of m copies of a. If no such m exists, the order of a is infinite.
If the quotient group G/Z(G) is cyclic, G is abelian (and hence G = Z(G), so G/Z(G) is trivial). The center of the Rubik's Cube group consists of two elements – the identity (i.e. the solved state) and the superflip. The center of the Pocket Cube group is trivial. The center of the Megaminx group has order 2, and the center of the Kilominx ...