When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Projection method (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Projection_method_(fluid...

    In computational fluid dynamics, the projection method, also called Chorin's projection method, is an effective means of numerically solving time-dependent incompressible fluid-flow problems. It was originally introduced by Alexandre Chorin in 1967 [1] [2] as an efficient means of solving the incompressible Navier-Stokes equations.

  3. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The incompressible NavierStokes equation is a differential algebraic equation, having the inconvenient feature that there is no explicit mechanism for advancing the pressure in time. Consequently, much effort has been expended to eliminate the pressure from all or part of the computational process.

  4. Streamline upwind Petrov–Galerkin pressure-stabilizing Petrov ...

    en.wikipedia.org/wiki/Streamline_upwind_Petrov...

    The streamline upwind Petrov–Galerkin pressure-stabilizing Petrov–Galerkin formulation for incompressible NavierStokes equations can be used for finite element computations of high Reynolds number incompressible flow using equal order of finite element space (i.e. ) by introducing additional stabilization terms in the NavierStokes Galerkin formulation.

  5. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    Pressure-correction method is a class of methods used in computational fluid dynamics for numerically solving the Navier-Stokes equations normally for incompressible flows. Common properties [ edit ]

  6. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the NavierStokes equations is the conversion of the NavierStokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  7. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In the analysis of a flow, it is often desirable to reduce the number of equations and/or the number of variables. The incompressible NavierStokes equation with mass continuity (four equations in four unknowns) can be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D.

  8. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_existence...

    In mathematics, the NavierStokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  9. PISO algorithm - Wikipedia

    en.wikipedia.org/wiki/PISO_algorithm

    It is an extension of the SIMPLE algorithm used in computational fluid dynamics to solve the Navier-Stokes equations. PISO is a pressure-velocity calculation procedure for the Navier-Stokes equations developed originally for non-iterative computation of unsteady compressible flow, but it has been adapted successfully to steady-state problems.