Ad
related to: 3 examples of nucleic acids
Search results
Results From The WOW.Com Content Network
Nucleic acids RNA (left) and DNA (right). Nucleic acids are large biomolecules that are crucial in all cells and viruses. [1] They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid ...
An example of a complementary sequence to AGCT is TCGA. DNA is double-stranded containing both a sense strand and an antisense strand. Therefore, the complementary sequence will be to the sense strand. [4] Nucleic acid design can be used to create nucleic acid complexes with complicated secondary structures such as this four-arm junction.
Similarly, uric acid can be formed when AMP is deaminated to IMP from which the ribose unit is removed to form hypoxanthine. Hypoxanthine is oxidized to xanthine and finally to uric acid. Instead of uric acid secretion, guanine and IMP can be used for recycling purposes and nucleic acid synthesis in the presence of PRPP and aspartate (NH 3 donor).
Nucleic acids are complex, high-molecular-weight biochemical macromolecules composed of nucleotide chains. Subcategories. This category has the following 4 ...
DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life. The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides.
These can be inorganic (for example, water and metal ions) or organic (for example, the amino acids, which are used to synthesize proteins). [7] The mechanisms used by cells to harness energy from their environment via chemical reactions are known as metabolism. The findings of biochemistry are applied primarily in medicine, nutrition and ...
At neutral pH, nucleic acids are highly charged as each phosphate group carries a negative charge. [7] Both DNA and RNA are built from nucleoside phosphates, also known as mononucleotide monomers, which are thermodynamically less likely to combine than amino acids. Phosphodiester bonds, when hydrolyzed, release a considerable amount of free energy.
The sequence of nucleobases on a nucleic acid strand is translated by cell machinery into a sequence of amino acids making up a protein strand. Each group of three bases, called a codon, corresponds to a single amino acid, and there is a specific genetic code by which each possible combination of three bases corresponds to a specific amino acid.