Search results
Results From The WOW.Com Content Network
The ratio of width to height of standard-definition television. In mathematics, a ratio (/ ˈ r eɪ ʃ (i) oʊ /) shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3).
For example, in the fraction 3 / 4 , the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3 / 4 of a cake. Fractions can be used to represent ratios and division. [1]
Pythagorean perfect fifth on C Play ⓘ: C-G (3/2 ÷ 1/1 = 3/2).. In musical tuning theory, a Pythagorean interval is a musical interval with a frequency ratio equal to a power of two divided by a power of three, or vice versa. [1]
Most time signatures consist of two numerals, one stacked above the other: The lower numeral indicates the note value that the signature is counting. This number is always a power of 2 (unless the time signature is irrational), usually 2, 4 or 8, but less often 16 is also used, usually in Baroque music. 2 corresponds to the half note (minim), 4 to the quarter note (crotchet), 8 to the eighth ...
In music, the septimal minor third, also called the subminor third (e.g., by Ellis [3] [4]) or septimal subminor third, is the musical interval exactly or approximately equal to a 7/6 ratio of frequencies. [5] In terms of cents, it is 267 cents, a quartertone of size 36/35 flatter than a just minor third of 6/5.
The sum of the reciprocals of the pentatope numbers is 4 / 3 . Sylvester's sequence is an integer sequence in which each member of the sequence is the product of the previous members, plus one. The first few terms of the sequence are 2, 3, 7, 43, 1807 . The sum of the reciprocals of the numbers in Sylvester's sequence is 1.
5-limit Tonnetz. Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2 −3 ·3 1 ·5 1 = 15/8.
Archimedes' figure with a = 3 / 4 In mathematics, the infinite series 1 / 4 + 1 / 16 + 1 / 64 + 1 / 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1]