When.com Web Search

  1. Ad

    related to: formula for reflection across line y=x

Search results

  1. Results From The WOW.Com Content Network
  2. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  3. Reflection formula - Wikipedia

    en.wikipedia.org/wiki/Reflection_formula

    In mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation . It is common in mathematical literature to use the term "functional equation" for what are specifically reflection formulae.

  4. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  5. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In Euclidean geometry, the inversion of a point X with respect to a point P is a point X* such that P is the midpoint of the line segment with endpoints X and X*. In other words, the vector from X to P is the same as the vector from P to X*. The formula for the inversion in P is x* = 2p − x. where p, x and x* are the position vectors of P, X ...

  6. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  7. Oblique reflection - Wikipedia

    en.wikipedia.org/wiki/Oblique_reflection

    For example, consider the plane P to be the xy plane, that is, the plane given by the equation z=0 in Cartesian coordinates. Let the direction of the reference line L be given by the vector (a, b, c), with c≠0 (that is, L is not parallel to P). The oblique reflection of a point (x, y, z) will then be

  8. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    Likewise, (x, −y) are the coordinates of its reflection across the first coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle with the x-axis, is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x′,y′), where

  9. Schwarz function - Wikipedia

    en.wikipedia.org/wiki/Schwarz_function

    The Schwarz function of a curve in the complex plane is an analytic function which maps the points of the curve to their complex conjugates.It can be used to generalize the Schwarz reflection principle to reflection across arbitrary analytic curves, not just across the real axis.