When.com Web Search

  1. Ad

    related to: xy plane quadrants diagram

Search results

  1. Results From The WOW.Com Content Network
  2. Quadrant (plane geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrant_(plane_geometry)

    The four quadrants of a Cartesian coordinate system. The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes. The axes themselves are, in general, not part of the respective quadrants.

  3. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive. 3D Cartesian coordinate handedness. The name derives from the right-hand rule.

  4. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the surface at that point. The concept of a tangent is one of the most fundamental notions in differential geometry and has been extensively generalized; see Tangent space .

  5. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    The complex plane is associated with two distinct quadratic spaces. For a point z = x + iy in the complex plane, the squaring function z 2 and the norm-squared x 2 + y 2 are both quadratic forms. The former is frequently neglected in the wake of the latter's use in setting a metric on the complex plane.

  6. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Alternatively, the conversion can be considered as two sequential rectangular to polar conversions: the first in the Cartesian xy plane from (x, y) to (R, φ), where R is the projection of r onto the xy-plane, and the second in the Cartesian zR-plane from (z, R) to (r, θ).

  7. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  8. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...

  9. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The case of θ = 0, φ ≠ 0 is called a simple rotation, with two unit eigenvalues forming an axis plane, and a two-dimensional rotation orthogonal to the axis plane. Otherwise, there is no axis plane. The case of θ = φ is called an isoclinic rotation, having eigenvalues e ±iθ repeated twice, so every vector is rotated through an angle θ.