Ads
related to: quantum bit simulator 3d model librarydiscover.3ds.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Qiskit is made of elements that work together to enable quantum computing. The central goal of Qiskit is to build a software stack that makes it easier for anyone to use quantum computers, regardless of their skill level or area of interest; Qiskit allows users to design experiments and applications and run them on real quantum computers and/or classical simulators.
Credit: Britton/NIST Trapped ion quantum simulator illustration: The heart of the simulator is a two-dimensional crystal of beryllium ions (blue spheres in the graphic); the outermost electron of each ion is a quantum bit (qubit, red arrows). The ions are confined by a large magnetic field in a device called a Penning trap (not shown).
Quantum chemistry computer programs are used in computational chemistry to implement the methods of quantum chemistry. Most include the Hartree–Fock (HF) and some post-Hartree–Fock methods. They may also include density functional theory (DFT), molecular mechanics or semi-empirical quantum chemistry methods.
QuTiP, short for the Quantum Toolbox in Python, is an open-source computational physics software library for simulating quantum systems, particularly open quantum systems. [1] [2] QuTiP allows simulation of Hamiltonians with arbitrary time-dependence, allowing simulation of situations of interest in quantum optics, ion trapping, superconducting circuits and quantum nanomechanical resonators.
The service was launched in May 2016 as the IBM Quantum Experience [1] with a five-qubit quantum processor and matching simulator connected in a star shaped pattern. At this time, users could only interact with the hardware through the quantum composer GUI. Quantum circuits were also limited to the specific two-qubit gates available on the ...
Comprehensive life science modeling and simulation suite of applications focused on optimizing drug discovery process: small molecule simulations, QM-MM, pharmacophore modeling, QSAR, protein-ligand docking, protein homology modeling, sequence analysis, protein-protein docking, antibody modeling, etc.
The Quantum Development Kit includes a quantum simulator capable of running Q# and simulated 30 logical qubits. [17] [18] In order to invoke the quantum simulator, another .NET programming language, usually C#, is used, which provides the (classical) input data for the simulator and reads the (classical) output data from the simulator. [19]
Complex numbers model probability amplitudes, vectors model quantum states, and matrices model the operations that can be performed on these states. Programming a quantum computer is then a matter of composing operations in such a way that the resulting program computes a useful result in theory and is implementable in practice.