When.com Web Search

  1. Ads

    related to: maximum and minimum of a domain function worksheet examples 5th

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum , [ b ] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.

  3. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    A continuous function () on the closed interval [,] showing the absolute max (red) and the absolute min (blue).. In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed and bounded interval [,], then must attain a maximum and a minimum, each at least once.

  4. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  5. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    In other words, a quintic function is defined by a polynomial of degree five. Because they have an odd degree, normal quintic functions appear similar to normal cubic functions when graphed, except they may possess one additional local maximum and one additional local minimum. The derivative of a quintic function is a quartic function.

  6. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...

  7. Bauer maximum principle - Wikipedia

    en.wikipedia.org/wiki/Bauer_maximum_principle

    Since a linear function is simultaneously convex and concave, it satisfies both principles, i.e., it attains both its maximum and its minimum at extreme points. Bauer's maximization principle has applications in various fields, for example, differential equations [2] and economics. [3]

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...

  9. Proper convex function - Wikipedia

    en.wikipedia.org/wiki/Proper_convex_function

    In convex analysis and variational analysis, a point (in the domain) at which some given function is minimized is typically sought, where is valued in the extended real number line [,] = {}. [1] Such a point, if it exists, is called a global minimum point of the function and its value at this point is called the global minimum (value) of the ...