Search results
Results From The WOW.Com Content Network
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
The apparent triangles formed from the figures are 13 units wide and 5 units tall, so it appears that the area should be S = 13×5 / 2 = 32.5 units. However, the blue triangle has a ratio of 5:2 (=2.5), while the red triangle has the ratio 8:3 (≈2.667), so the apparent combined hypotenuse in each figure is actually bent.
Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...
From a solution to one of these two problems, one may pass to a solution of the other by a compass and straightedge construction. The triple-angle formula gives an expression relating the cosines of the original angle and its trisection: cos θ = 4 cos 3 θ / 3 − 3 cos θ / 3 .
As a special case, a complete CAT(0) space is also known as a Hadamard space; this is by analogy with the situation for Hadamard manifolds. A Hadamard space is contractible (it has the homotopy type of a single point) and, between any two points of a Hadamard space, there is a unique geodesic segment connecting them (in fact, both properties ...
Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the Millennium Prize Problems, receive considerable attention. This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative, and the ...
Cat Problems is a 2021 children's book written by Jory John and illustrated by Lane Smith. It is a comedic picture book about a pampered house cat. John and Smith also wrote Penguin Problems (2016) and Giraffe Problems (2018).
The inscribed square problem, also known as the square peg problem or the Toeplitz' conjecture, is an unsolved question in geometry: Does every plane simple closed curve contain all four vertices of some square? This is true if the curve is convex or piecewise smooth and in other special cases. The problem was proposed by Otto Toeplitz in 1911. [1]