Search results
Results From The WOW.Com Content Network
Arachnoid granulations (also arachnoid villi, and Pacchionian granulations or bodies) are small outpouchings of the arachnoid mater and subarachnoid space into the dural venous sinuses of the brain. The granulations are thought to mediate the draining of cerebrospinal fluid (CSF) from the subarachnoid space into the venous system .
The arachnoid mater makes arachnoid villi, small protrusions through the dura mater into the venous sinuses of the brain, which allow CSF to exit the subarachnoid space and enter the blood stream. Unlike the dura mater, which receives a rich vascular supply from numerous arteries, the arachnoid mater is avascular (lacking blood vessels).
Arachnoid villi are formed around the 35th week of development, with arachnoid granulations noted around the 39th, and continuing developing until 18 months of age. [3] The subcommissural organ secretes SCO-spondin, which forms Reissner's fiber within CSF assisting movement through the cerebral aqueduct. It is present in early intrauterine life ...
Arachnoid villi, which are outgrowths of the arachnoid mater (the middle meningeal layer), extend into the dural venous sinuses to drain CSF. These villi act as one-way valves. Meningeal veins, which course through the dura mater, and bridging veins, which drain the underlying neural tissue and puncture the dura mater, empty into these dural ...
These sinuses play a crucial role in cerebral venous drainage. A dural venous sinus, in human anatomy, is any of the channels of a branching complex sinus network that lies between layers of the dura mater, the outermost covering of the brain, and functions to collect oxygen-depleted blood. Unlike veins, these sinuses possess no muscular coat.
The middle element of the meninges is the arachnoid mater, or arachnoid membrane, so named because of its resemblance to a spider web. It cushions the central nervous system. This thin, transparent membrane is composed of fibrous tissue and, like the pia mater, has an outer layer of tightly packed flat cells, forming the arachnoid barrier. [8]
The brain and spinal cord are covered by the meninges, the three protective membranes of the tough dura mater, the arachnoid mater and the pia mater. The cerebrospinal fluid (CSF) within the skull and spine provides further protection and also buoyancy, and is found in the subarachnoid space between the pia mater and the arachnoid mater.
In a recent study, Go, et al., ~ using enzyme ultracnytochemistry, detected Na+/K + adenosine triphosphatase activity on cap cells of arachnoid villi; they proposed that this biochemical mechanism could contribute to CSF absorption. This assumption implies a "'secretory" component in CSF absorption along with the already widely accepted mechanisms.